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Optimal control method for active vibration control of linear time-delay systems is
investigated in this paper. In terms of two cases that time delay is integer and non-integer
times of sampling period, motion equation with time delay is transformed as standard
discrete forms which contain no time delay by using zero order holder respectively. Discrete
quadratic function is used as objective function in design of controller to guarantee good
control e$ciency on sampling points. In every step of computation of the deduced
controller, it contains not only current step of state feedback but also linear combination of
some former steps of control. Because the controller is deduced directly from time-delay
di!erential equation, system stability can be guaranteed easily, thus this method is generally
applicable to ordinary control systems. The performance of the control method proposed
and system stability when using this method are all demonstrated by numerical simulation
results. Simulation results demonstrate that the presented method is a viable and attractive
control strategy for applications to active vibration control. Instability in responses occurs
possibly if the systems with time delay are controlled using controller designed in case of no
time delay.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

In recent years, the technique of active vibration control has been developing rapidly, and
many active control methods have been used in practical engineering [1}3]. Results obtained
both in laboratory demonstrations and in actual measurements for practical engineering
show that vibration suppression by active control is emerging as a powerful technique to
improve the performance of structures against earthquakes, wind and other dynamic
excitations [3}6]. Meanwhile, many problems that limit this technique towards large-scale
practical application have been found [7]. Time delay is one of these problems. For example, in
active control of large structures, because order of magnitude of control force is often required
to be the same as weight of the controlled structures, servohydraulic actuators are often used as
control-force delivery devices. But time delay exists obviously in the servohydraulic actuators
and it results in unsynchronized control force applied to the structures.

Time delay exists in active control systems inevitably. Time delay can be divided into two
classes on the whole. One is in measurement of system variables and calculation for
required control force, including physical properties of equipment used in the system or
signal transmission. The other is in control for actuators to build up the required control
force. The time delay is often omitted for convenience in theoretical analysis and control
design before. But even small time delay, it can lead the actuators inputting energy to the
structures when no energy is required by the structures, and this can cause degradation in
control e$ciency or even render the structures unstable [8].
22-460X/02/130383#12 $35.00/0 � 2002 Elsevier Science Ltd.
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Optimal control method for vibration control of linear systems with time delay in control
is investigated in this paper. Zero order holder is assumed to be used between the controlled
structure and controller, thus the time-delay di!erential equation can be transformed as
standard discrete form which contains no time delay. Because the controller is obtained
directly from the time-delay di!erential equation, system stability can be guaranteed easily.
Numerical example for a three-story building model is carried out to demonstrate the
e$ciency of the proposed control method at the end of this paper.

2. EQUATION OF MOTION

Consider a linear structure modelled by an n-degree-of-freedom lumped
mass}spring}dashpot system. The matrix equation of motion of the structural system is
written as

MXG (t)#CX� (t)#KX (t)"HU (t!�)#P (t), (1)

where X"[x
�
, x

�
,2, x

�
]�"an n-dimensional vector of displacement; M, C and

K"(n�n) mass, damping and sti!ness matrices, respectively; H"a (n�r) matrix denoting
the location of controllers. U (t!�)"an r-dimensional vector of controllers, in which � is
the time delay. P (t) is the external excitation.

The time delay � can be written as follows:

�"l¹!mN , (2)

where l'0 is any integer; 0)mN (¹; ¹ is the sampling period.
In the state-space representation, equation (1) becomes

Z� (t)"AZ (t)#BU (t!�)#P� (t), (3)

where

Z(t)"�
X(t)

X� (t)� , A"�
0 I

!M!1K !M!1C� , B"�
0

M!1H� , P� (t)"�
0

P (t)� .

3. DISCRETIZATION AND STANDARDIZATION FOR MOTION EQUATION

The analytical solution of equation (3) can be written as [9, 10]

Z (t)"eA ����� �Z (t
�
)#�

�

��

eA �����BU (�!�) d�#�
�

��

eA �����P� (�) d�. (4)

Zero order holder is assumed being used in the structure, i.e.,

U (t)"U (k), k¹)t((k#1)¹ , (5)

where kmeans the kth step of control. U(k) denotes U(k¹) in fact. This kind of denotation is
used below for simplicity in expression. Equation (5) means that the actuators in the
structure exert constant control forces on the structure during two adjoining sampling
points.
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Let t
�
"k¹ and t"(k#1)¹, equation (4) becomes

Z (k#1)"eA�Z (k)#�
������

��

eA ��������BU (�!�) d�

#�
������

��

eA ��������P� (�) d�. (6)

Making variable substitution �"(k#1)¹!�, equation (6) becomes

Z (k#1)"eA�Z(k)#�
�

�

eA�BU (k¹#¹!l¹#mN !�) d�

#�
�

�

eA�P� (k¹#¹!�) d�. (7)

Through equation (7), equation (3) can be transformed into standard discrete form in terms
of two cases that the time delay, �, is integer and non-integer times of the sampling period,
¹ (i.e., mN "0 and mN O0), respectively, as follows [10].

1. mN "0

When mN "0, in consideration of equation (5), equation (7) can be written as

Z (k#1)"eA�Z (k)#�
�

�

eA�d�BU (k!l)#�
�

�

eA�P� (k¹#¹!�) d�

"FZ (k)#GU (k!l)#P� (k) , (8)

where

F"eA�, G"�
¹

�

eA�dtB, P� (k)"�
�

�

eA�P� (k¹#¹!�) d�. (9)

Equation (8) is namely the discrete form of the continuous state equation given by
equation (3) when mN "0. For design of optimal controller, equation (8) should be further
changed into standard discrete form. For this purpose, let

Zn#1 (k)"U (k!l ),

Zn#2 (k)"U (k!l#1),

�

Zn#l (k)"U (k!1)

(10)

and let

Z� (k)"[ZT (k), ZT
n#1 (k),2 ,ZT

n#l (k)]
T . (11)

Thus, equation (8) can be written as a standard form as follows:

Z� (k#1)"F� Z� (k)#G� U (k)#P� (k) (12)
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in which

F� "

F G 0 2 0

0 0 I 2 0

� � � �

0 0 2 2 I

0 0 2 0 0

, G� "

0

�

�

0

I

, P� (k)"

P� (k)

�

�

0

0

. (13)

Iterative algorithms of F and G given in equation (9) are displayed in Appendix A.
2. mN O0
When mN O0, equation (7) can be written as

Z (k#1)"eA�Z (k)#�
mN

�

eA�d�BU (k!l#1)#�
�

mN
eA�d�BU (k!l)

#�
�

�

eA�P� (k¹#¹!�) d� (14)

"FZ (k)#GaU (k!l)#GbU (k!l#1)#P� (k)

in which

F"eA�, Ga"�
�

m�
eA�d�B,

Gb"�
m�

�

eA�d�B, P� (k)"�
�

�

eA�P� (k¹#¹!�) d�. (15)

Let

F (t)"eA� , G (t)"�
�

�

eA�d�B (16)

the "rst three terms in equation (15) can be written as

F"eA�"F (¹),

Ga"�
�

mN
eA�d�B"�

¹!mN

�

eA �mN ���d	B

"eAmN �
��mN

�

eA�d	B"F (mN )G(¹!mN ),

Gb"�
mN

�

eA�d�B"G (mN ). (17)

Equation (14) is namely the discrete form of equation (3) whenmO0. Likewise, equation
(14) can be further changed into the following standard discrete form:

Z� (k#1)"F� Z� (k)#G� U(k)#P� (k) (18)
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in which

F� "

F Ga Gb 0 2 0

0 0 I 0 2 0

� � � � �

0 0 0 2 2 I

0 0 0 2 2 0

, G� "

0

�

�

0

I

, P� (k)"

P� (k)

�

�

0

0

. (19)

4. OPTIMAL CONTROL METHOD WITHOUT TIME DELAY IN CONTROL

It is well known that the linear quadratic regular (LQR) is a classical control method for
vibration suppression of linear systems. From references [10, 11], we can design the optimal
controller according to the following method when there is no time delay in control. It
should be noted that the external excitation P (t) can be neglected in design of the optimal
controller.

For the following linear discrete steady system

Z (k#1)"FZ (k)#GU (k), Z(0)"Z0 , (20)

the performance index is given by

J"
�
�
�	�

[ZT (k)QZ (k)#UT (k)RU (k)] (21)

in which Q is positive-semide"nite symmetric matrix; R is positive-de"nite symmetric
matrix. Assuming that S (k) is the solution of the following discrete Riccati di!erence
equation:

S (k)"FT
S (k#1)!S (k#1)G[R#GTS (k#1)G]��GTS (k#1)�F#Q,

S (N)"Q0 (22)

hence for arbitrary positive-semide"nite symmetric matrix Q0 , there exists the following
result:

S" lim
���

S (k,N)" lim
����

S (k,N) (23)

and S is a constant matrix independent of Q0. Furthermore, S is a unique positive-de"nite
symmetric matrix determined by the following discrete Riccati algebraic equation:

S"FT
S!SG[R#GTSG]�� GTS�F#Q (24)

thus, the steady state controller can be written as follows:

U (k)"!LZ (k), L"[R#GTSG]��GTSF . (25)

This controller can make the performance index J given by equation (21) minimum.
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5. OPTIMAL CONTROL METHOD WITH TIME DELAY IN CONTROL

In literatures [10, 12], the optimal design of delay systems are explained in detail. In this
section, the discrete optimal controller is discussed when the time delay exists in the control
system.

The performance index given by equation (21) can guarantee good control e$ciency on
sampling points. This performance index is used herein for design of the optimal controller.
The controller can be designed in terms of two cases of mN "0 and mN O0 respectively [10].

1. mN "0

From the above, the external excitation P (t) can be neglected in the design of the
controller. When mN "0, the discrete state equation (8) when neglecting P (t) can be written
as

Z (k#1)"FZ (k)#GU (k!l) , (26)

where F and G are given in equation (9).
Now the question is to design optimal controller by minimizing the objective function

J given by equation (21) subjected to the constraint of the discrete state equation (26).
Equation (26) can be changed into the following standard discrete form:

Z� (k#1)"F� Z� (k)#G� U(k), (27)

where Z� (k) is given by equation (11), F� and G� are given in equation (13).
The performance index J given by (21) can be written as

J"
�
�
�	�

[Z� T (k)Q) Z� (k)#UT(k)R< U (k)] (28)

in which

Q) "�
Q 0

0 0� , R< "R. (29)

So the question is changed to design the optimal controller by minimizing the objective
function J given by equation (28) subjected to the constraint of the discrete state equation
(27). This optimal controller can be designed by using equations (20)}(25), and expressed as
follows:

U (k)"!LZ� (k)"!L1Z (k)!L2U (k!l)!2!Ll#1U (k!1) (30)

in which, L1&Ll#1 are corresponding dimensional partitioning matrices of matrix L. We
can observe from equation (30) that the optimal controller contains not only current step of
state feedback term, Z (k), but also the linear combination of frontal l steps of control
magnitudes, U (k!l)&U (k!1).

2. mN O0

When mN O0, the discrete state equation (14) when neglecting external excitation P (t) can
be written as

Z(k#1)"FZ (k)#GaU (k!l)#GbU(k!l#1), (31)
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where F, Ga and Gb are given in equation (15). In the standard form, equation (31) can be
written as

Z� (k#1)"F� Z� (k)#G� U (k), (32)

where Z� (k) is given by equation (11), F� and G� are given in equation (19).
Likewise, the objective function J given by equation (21) can be changed into the form of

equation (28). Thus, the optimal controller can be determined by using the same method as
given above. This controller has the same expression as equation (30). And equally, this
optimal controller contains the linear combination of frontal l steps of control magnitudes
apart from current state feedback.

6. NUMERICAL SIMULATION

To demonstrate the applications of the proposed methods and their performance,
simulation results for a linear building are presented in this section. A three-story model
studied by Yang [13], subjected to horizontal earthquake ground acceleration X$

�
(t), is

considered as shown in Figure 1, in which every story unit is identically constructed. The
mass, sti!ness and damping coe$cient of each story unit are m

	
"1 Mton, k

	
"980 kN/m,

and c
	
"1)407 kNs/m, respectively (i"1}3). An ABS is installed in the "rst-story unit. El

Centro earthquake (north}south component) scaled to a maximum acceleration of 0)12 g is
used as the input excitation. The earthquake episode is 8 s. Time history of the earthquake is
shown in Figure 2. The sampling period is chosen to be ¹"0)002 s. Q and R in equation
(21) are given by Q"diag ([10
, 10�, 10�, 1, 1, 1]) and R"1)806�10��� respectively.

The maximum interstory drifts, x
	
, the maximum absolute #oor acceleration, x(

	
, without

control for the structure are shown in columns 2 and 3 of Table 1.
m1

m2

m3

ABS  

Figure 1. Building model.
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Figure 2. E1 Centro earthquake time history.



TABLE 1

Maximum response quantities (x: cm, x( : cm/s�)

Story No control DLQR
;"3920N

mN "0 mN "0)001 s DLQR*
;"3804N

�"0)16 s
;"4299N

�"0)2 s
;"3804N

�"0)159 s
;"4297N

�"0)199 s
;"3817N

x xK x xK x xK x xK x xK x xK x xK
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

1 1)37 323 0)10 150 0)49 164 0)51 362 0)49 166 0)51 366 0)10 143
2 1)04 487 0)37 192 0)52 231 0)46 218 0)52 232 0)46 220 0)38 200
3 0)61 599 0)25 246 0)30 297 0)28 278 0)31 300 0)28 279 0)26 257
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Figure 3. Maximum responses and maximum control-force varied with time delay when the structure with time
delay are controlled using the controller designed in case of no time delay. (a) Maximum interstory drifts: - - - - - -,
the "rst-story unit; } ) ) } ) ) } ) ) } ) ) }, the second-story unit; **, the third-story unit. (b) Maximum absolute
acceleration: - - - - - -, the "rst-story unit; } ) )} ) ) } ) ) } , the second-story unit; **, the third-story unit.
(c) Maximum control force: **.
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When the controller is designed in case of no time delay, it can be obtained as

; (k)"!10�[1)7557x
�
(k)!0)1321x

�
(k)#0)0777x

�
(k)

#0)0420xR
�
(k)#0)0210xR

�
(k)#0)0087xR

�
(k)].
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Figure 4. Maximum interstory drifts, maximum absolute acceleration of every story units and maximum
control-force varied with �. (a) Maximum interstory drift:**, the "rst-story unit; } ) ) } ) ) } ) ) } , the second-story
unit; } } } , the third-story unit. (b) Maximum absolute acceleration:**, the "rst-story unit; } ) ) } ) ) } ) ) } ) ) } , the
second-story unit; - - - - - -, the third-story unit. (c) Maximum control force: - - - - - -, no time delay;**, with time
delay.
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in which x
�
(k), x

�
(k), x

�
(k) are the interstory drifts of every story units of the structure; and

xR
�
(k), xR

�
(k), xR

�
(k) are the corresponding velocity quantities. The maximum interstory drifts,

x
	
, the maximum absolute #oor acceleration, x(

	
, of every story units and the maximum

required control force, ;, are shown in columns 4 and 5 of Table 1, denoted by DLQR.
When the above controller which is designed in case of no time delay is used to control

the structure with time delay in control, the curves for the maximum response quantities
and the maximum required control force varied with time delay, �, (0)�)0)01 s, i.e.,
0)l)5) are shown in Figure 3. We can observe from Figure 3 that instability in system
responses occurs when � is very small. In addition, the maximum time delay for stability can
be determined to be 0)006 s approximately from Figure 3.

Considering the case of mN "0, namely that the time delay, �, is integer times of the
sampling period, ¹. The curves for the maximum response quantities and the maximum
required control force varied with � (0)�)0)4 s, i.e., 0)l)200) are shown in Figure 4.
In Figure 4(a) and 4(b), the upper three beelines denote the case of no control for the
structure, the lower three beelines denote the case of the DLQR. In Figure 4(c), the dotted
line denotes the case of the DLQR. We can observe from Figure 4 that system stability can
be guaranteed independent of the time delay. Every maximum response quantities and the
required maximum control forces when �"0)2 and 0)16 s are shown in columns of 6}9 of
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Figure 5. Time histories of responses of the third-story unit and control force. (a) Interstory drift: - - - - - -,
without control; == DLQR with no time delay; ***, DLQR with time delay; (b) Absolute acceleration:
- - - - - -, without control;00, DLQR with no time delay;***, DLQR with time delay; (c) Control force:==,
DLQR with no time delay; - - - - - -, DLQR with time delay.
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Table 1. Time histories of the interstory drift and the absolute #oor acceleration of the
third-story unit and time history of the control force when �"0)2 s are shown in Figure 5.
Time histories of responses and the control force when without control and using the
DLQR method are given in Figure 5 for comparison. When using the DLQR method, Q is
still identical to the above, whereas R is adjusted so that the maximum control force is
identical to that when �"0)2 s, i.e. ;"3804N; the maximum response quantities can be
found in columns of 14 and 15 of Table 1, denoted by DLQR*. We can obtain from Figure 5
and Table 1 that the control method proposed is e!ective in reducing maximum responses
of the structure. But its control e$ciency is lower in comparison with that when using the
DLQR.

Considering the case that � is non-integer times of ¹ (i.e., mN O0). mN "0)001 s is taken
herein. The curves for the maximum response quantities and the maximum required control
force varied with � are similar to Figure 4, and omitted herein. The maximum response
quantities and the maximum required control forces, when �"0)159 and 0)199 s (i.e., l"80
and 100), are presented in columns 10}13 of Table 1 respectively. From columns (6)}(13), we
can observe that the control e$ciency when �"0)2 and 0)16 s is very close to that when
�"0)199 and 0)159 s respectively. And this indicates that, when the interval of two time
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delays is very small, close control e$ciencies can be achieved by using controllers designed
in terms of mN "0 and mN O0 respectively.

7. CONCLUSION

Time delay exists in active vibration control inevitably. Control design ignoring may
result in a somewhat big error between actual and desired control e$ciencies, or even
render the structures unstable. Thus, time delay is one of the problems that need a serious
attention.

Optimal control method for linear systems with time delay in control is investigated in
this paper. Research results demonstrate that good control e$ciency can be achieved by
using the proposed control method; system stability can be guaranteed by this method.
Instability in responses occurs possibly if the systems with time delay are controlled using
controller designed in case of no time delay.
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APPENDIX A. ITERATIVE ALGORITHMS OF F AND G

F given in equation (9) can be expanded as

F"eA¹

"I#A¹#

A�¹�

2!
#2"

�
�
�	�

A�¹�

k!
. (A1)
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G given in equation (9) can be written as

G"�
�

�

eAtdtB"

�
�
�	�

A�¹���

(k#1)!
B"

�
�
�	�

A���¹�

k!
B. (A2)

The Euclidean norm of equation (A1) can be written as

�F�"�eA¹ �"��
�
�
�	�

(A¹)�

k! ��)
�
�
�	�

�A¹��

k!
"e�A¹� . (A3)

Because e�A¹� is a scalar, it is bounded as far as �A¹� is bounded. Thus the series given by
equation (A1) is bounded. Likewise, the series given by equation (A2) is bounded. If A is
non-singular, G given by equation (A2) can be written as

G"A�� (eA¹

!I)B"A�� (F!I)B. (A4)

Thus, F and G can be calculated in accordance with equations (A1) and (A4) when A is
non-singular.

If A is singular, equation (A4) cannot be used for G. Here we can calculate F and
G according to the following method.

Let

G
�
"�

�

�

eAt dt"
�
�
�	�

A���¹�

k!
(A5)

so we have

G"G
�
B (A6)

in accordance with equation (A1), we can obtain

F"

�
�
�	�

A�¹�

k!
"I#

�
�
�	�

A���¹ �

k!
A"I#G

�
A. (A7)

Thus, the algorithms of F and G when A is singular can be summed up as follows:

G
�
"

�
�
�	�

G
�
(k), G

�
(k)"

A¹

k
G

�
(k!1),

G
�
(1)"¹I, G"G

�
B, F"I#G

�
A. (A8)
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